报告题目:The Minkowski type problems for log-concave functions
主 讲 人: Professor Deping Ye (Memorial University of Newfoundland)
报告时间: 2024年7月1日 周一上午 10:00-12:00
报告地点: 数理楼224
报告摘要:
There is a growing body of work on the geometric theory of log-concave functions. Among the most important are the Minkowski type problems for log-concave functions, which are closely related to the Monge-Ampere type equations.
In this talk, I will talk about the $L_p$ Asplund sum of log-concave functions, explain the $L_p$ surface area measures for log-concave functions, discuss related Minkowski type problems, and show our solutions to this Minkowski type problem for log-concave functions. I will also present similar results for the dual Orlicz setting, where the measure of interest is obtained via a variational formula of the Orlicz moment in terms of the Asplund sum.
个人简介:
Professor Deping Ye,2000年本科毕业于山东大学,2000-2003年于浙江大学读研, 2009年博士毕业于美国Case Western Reserve University,现为加拿大Memorial University终身教授,并主持加拿大国家自然科学基金(NSERC) 项目。现任加拿大数学会旗舰杂志Canadian Journal of Mathematics 和 Canadian Mathematical Bulletin的副主编(Associate Editor), 并于2017年获得JMAA Ames奖。 长期从事凸几何分析,几何和泛函不等式, 随机矩阵,量子信息理论, 和统计学等领域的研究。 已在 Comm. Pure Appl. Math.,Adv. Math., J. Funct. Anal., Math. Ann., CVPDE等国际著名杂志(数学类, 数学物理类,和统计类) 上发表论文40篇。